Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Wei-Qiang Chen, Qi Ya and Xuan-Ming Duan*

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancunbeiyitiao, Haidian, Beijing 100180, People's Republic of China

Correspondence e-mail:
xmduan@mail.ipc.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.134$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(4-Hydroxyphenyl)acrylamide

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2}$, the mean planes of the acrylamide moiety and the benzene ring make a dihedral angle of 11.6 (2) ${ }^{\circ}$. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into twodimensional corrugated sheets parallel to the ac plane.

Comment

The rational design of new materials in crystal engineering has been widely used (Desiraju, 1989; Thalladi et al., 1998; Du et al., 2005a). Recently, hydrogen bonding interactions have been widely used as the most successful strategy for engineering the structures of crystals to control molecular selfassembly in a helical structure (Gangopadhyay et al., 2001; Anthony et al., 2005; Du et al., 2005b). Furthermore, intermolecular hydrogen-bonding interactions could provide precise topological control to design novel materials. The directional nature of hydrogen bonds is exploited in the organized self-assembly of molecules in the solid state (Steed \& Atwood, 2000). Here we report the synthesis and X-ray crystal structure of the title compound, (I) (Fig. 1).

(I)

The N1-C7 bond length (Table 1) is significantly shorter than a typical single C-N bond (1.47 \AA; Sasada, 1984) and very close to the $\mathrm{C}=\mathrm{N}$ double-bond distance (1.28 \AA; Wang $e t$ al., 1998). It is indicative of the conjugation of atoms $\mathrm{N} 1, \mathrm{C} 7$, $\mathrm{O} 2, \mathrm{C} 8$ and C 9 , forming a $\pi_{5}{ }^{6}$ configuration. The mean planes of the acrylamide moiety and the benzene ring make a dihedral angle of 11.6 (2). The crystal packing (Fig. 2) is characterized by the formation of two-dimensional corrugated sheets parallel to the ac plane via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

To a solution of 4 -aminophenol $(0.545 \mathrm{~g}, 5 \mathrm{mmol})$ and triethylamine $(3.0 \mathrm{ml})$ in anhydrous tetrahydrofuran (15.0 ml), acrylic chloride in anhydrous tetrahydrofuran (5.0 ml) was added dropwise with stirring. After stirring for 24 h , ice water (20 ml) was added to the reaction mixture. The resulting mixture was extracted with chloroform. The organic layer was dried over magnesium sulfate, and the residue was recrystallized from ethyl acetate to give the title compound (I) (yield: $40 \%, 326 \mathrm{mg}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.72(m, 1 \mathrm{H}), 6.30(m$,

Received 24 November 2005
Accepted 6 December 2005 Online 10 December 2005
$2 \mathrm{H}), 6,72(d, 2 \mathrm{H}), 7.40(d, 2 \mathrm{H})$. Crystals of (I) were obtained as blocks by recrystallization from an ethyl acetate solution.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2}$
$M_{r}=163.17$
Orthorhombic, Pbca
$a=12.787$ (4) £
$b=9.918$ (3) \AA
$c=13.524$ (4) \AA
$V=1715.0(9) \AA^{3}$
$Z=8$
$D_{x}=1.264 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker APEX-II CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.814, T_{\text {max }}=0.993$
8550 measured reflections

Refinement

Refinement on F^{2}
Mo $K \alpha$ radiation
Cell parameters from 2486
reflections
$\theta=2.6-24.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.38 \times 0.30 \times 0.24 \mathrm{~mm}$

1510 independent reflections
1195 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 15$
$k=-11 \rightarrow 11$
$l=-16 \rightarrow 15$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.134$
$S=1.06$
1510 reflections
110 parameters
H-atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0742 P)^{2}\right. \\
\quad+0.3734 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.30 \mathrm{e}^{-3} \\
\Delta \rho_{\min }= \\
\hline
\end{array} \mathrm{A}^{-3} 14 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 3$	$1.374(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.342(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.2339(19)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.420(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$129.07(14)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$117.51(14)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$122.83(15)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{N} 1$	$123.18(16)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$118.12(14)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	$122.02(16)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$123.94(15)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$114.81(15)$
C1-C2-C3-O1	$178.68(17)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$	$168.01(17)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.79(17)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 2$	$2.6(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$179.38(17)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-177.74(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$-179.43(16)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-3.9(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-12.5(3)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$176.5(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	0.82	1.86	$2.673(2)$	171
N1-H1 $B \cdots$ O $^{\text {ii }}$	0.86	2.09	$2.916(2)$	161

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
All H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: APEXII (Bruker, 2003); cell refinement: APEXII and SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001) and DIAMOND (Brandenburg \& Berndt, 1999); software used to prepare material for publication: SHELXTL.

Figure 1
View of (I), with 30% probability displacement ellipsoids.

Figure 2
A perspective view of the crystal packing, showing the intermolecular hydrogen bonds (dashed lines).

This work was supported financially by the One Hundred Overseas Talents Program of the Chinese Academy of Sciences (CAS) and the Non-linear Nanophotonics Project of the Japan Science and Technology Agency (JST).

References

Anthony, S. P., Basavaiah, K., Radhakishnan, T. P. (2005). Cryst. Growth Des. 5, 1663-1666.
Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Elsevier: New York.
Du, M., Zhang, Z.-H. \& Zhao. X.-J. (2005a). Cryst. Growth Des. 5, 1199-1208.
Du, M., Zhang, Z.-H. \& Zhao. X.-J. (2005b). Cryst. Growth Des. 5, 1247-1254.
Gangopadhyay, P., Radhakishnan, T. P. (2001). Angew. Chem. Int. Ed. 40, 2451-2455.
Sasada, Y. (1984). Molecular and crystal structures. In Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.
Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steed, J. W. \& Atwood, J. L. (2000). Supramolecular Chemistry. Chichester: Wiley.
Thalladi, V. R., Brasselet, S., Weiss, H. C., Blaser, D., Katz, A. K., Boese, R., Zyss, J., Nangia, A. \& Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, $2563-$ 2577.

Wang, Z.-X., Jian, F.-F., Duan, C.-Y., Bai, Z.-P. \& You, X.-Z. (1998). Acta Cryst. C54, 1927-1929.

